Axiomas de Peano


Axiomas de Peano
Los axiomas de Peano o postulados de Peano definen de manera exacta al conjunto de los números naturales. Fueron establecidos por Peano (1858-1932), matemático italiano, en el siglo XIX. Básicamente, los naturales se pueden construir a partir de 5 axiomas fundamentales: <blockquote style="padding: 1em; border: 2px dotted purple;"> 1. 1 es un número natural. (es decir, el conjunto de los números naturales no es vacío) 2. Si a es un número natural, entonces a+1 también es un número natural (llamado el sucesor de a). 3. 1 no es sucesor de ningún número natural. (primer elemento del conjunto) 4. Si hay dos números naturales a y b tales que sus sucesores son diferentes entonces a y b son números naturales diferentes. 5. Axioma de inducción: si un conjunto de números naturales contiene al 1 y a los sucesores de cada uno de sus elementos entonces contiene a todos los números naturales.

Enciclopedia Universal. 2012.

Mira otros diccionarios:

  • Axiomas de Peano — Saltar a navegación, búsqueda Los axiomas de Peano o postulados de Peano son un conjunto de axiomas para los números naturales introducidos por Giuseppe Peano en el siglo XIX. Los axiomas se han utilizado prácticamente sin cambios para una… …   Wikipedia Español

  • Axiomas de Zermelo-Fraenkel — Los axiomas de Zermelo Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de… …   Wikipedia Español

  • Peano — Peano, axiomas de …   Enciclopedia Universal

  • Peano, axiomas de — ► MATEMÁTICAS Conjunto de axiomas que definen a los números naturales y permiten construir la aritmética como un sistema hipotético deductivo. Los cinco axiomas son: 1) La unidad de un número; 2) el sucesivo de un número es otro número; 3) si a y …   Enciclopedia Universal

  • Giuseppe Peano — Giuseppe Peano. Nacimiento 27 de agosto de 1858 …   Wikipedia Español

  • Teoremas de incompletitud de Gödel — Kurt Gödel a los 19 años de edad, cinco años antes de la demostración de los teoremas. Los teoremas de incompletitud de Gödel son dos célebres teoremas de lógica matemática demostrados por Kurt Gödel en 1930. Ambos están relacionados con la… …   Wikipedia Español

  • Número natural — Los números naturales pueden usarse para contar (una manzana, dos manzanas, tres manzanas, …). Un número natural es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que… …   Wikipedia Español

  • Sistema formal — La noción de sistema formal se utiliza para proporcionar una definición rigurosa del concepto de demostración en lógica y en matemáticas. La noción de sistema formal corresponde a una formalización rigurosa y completa del concepto de sistema… …   Wikipedia Español

  • Kurt Gödel — Para el lenguaje de programación, véase Gödel (lenguaje de programación). Kurt Gödel Kurt Gödel Nacimiento 28 de abril …   Wikipedia Español

  • Sistema axiomático — En matemáticas, un sistema axiomático consiste en un conjunto de axiomas que se utilizan, mediante deducciones, para demostrar teoremas. Una teoría matemática es un sistema axiomático y, por tanto, todos los teoremas derivados de ellos. Un… …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.